Comparison cones for multiparameter eigenvalue problems
نویسندگان
چکیده
منابع مشابه
Spectral asymptotics and bifurcation for nonlinear multiparameter elliptic eigenvalue problems
This paper is concerned with the nonlinear multiparameter elliptic eigenvalue problem u′′(r) + N − 1 r u′(r) + μu(r)− k ∑ i=1 λifi(u(r)) = 0, 0 < r < 1, u(r) > 0, 0 ≤ r < 1, u′(0) = 0, u(1) = 0, where N ≥ 1, k ∈ N and μ, λi ≥ 0 (1 ≤ i ≤ k) are parameters. The aim of this paper is to study the asymptotic properties of eigencurve μ(λ, α) = μ(λ1, λ2, · · · , λk, α) with emphasis on the phenomenon ...
متن کاملSpectral collocation for multiparameter eigenvalue problems arising from separable boundary value problems
In numerous science and engineering applications a partial differential equation has to be solved on some fairly regular domain that allows the use of the method of separation of variables. In several orthogonal coordinate systems separation of variables applied to the Helmholtz, Laplace, or Schrödinger equation leads to a multiparameter eigenvalue problem (MEP); important cases include Mathieu...
متن کاملA New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems
In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.
متن کاملPerturbation of multiparameter non-self-adjoint boundary eigenvalue problems for operator matrices
We consider two-point non-self-adjoint boundary eigenvalue problems for linear matrix differential operators. The coefficient matrices in the differential expressions and the matrix boundary conditions are assumed to depend analytically on the complex spectral parameter λ and on the vector of real physical parameters p. We study perturbations of semi-simple multiple eigenvalues as well as pertu...
متن کاملHarmonic Rayleigh-ritz for the Multiparameter Eigenvalue Problem
Harmonic extraction methods for the multiparameter eigenvalue problem willbe presented. These techniques are generalizations of their counterparts forthe standard and generalized eigenvalue problem. The methods aim to ap-proximate interior eigenpairs, generally more accurately than the standardextraction does. The process can be combined with any subspace expansionapproa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1980
ISSN: 0022-247X
DOI: 10.1016/0022-247x(80)90265-6